Устройство для взаимосвязи одной эвм с другими. Объединение эвм в многомашинные комплексы, многопроцессорные системы

Основные компоненты архитектуры ЭВМ:

Процессор,

Внутренняя (основная) память,

Внешняя память,

Устройства ввода, устройства вывода.

Внутренняя память ПК включает в себя оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ). В ОЗУ хранятся исполняемая в данный момент программа и данные, с которыми она непосредственно работает. ПЗУ - это память, предназначенная только для чтения. В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере. Основная память состоит из регистров. Регистр - это устройство для временного запоминания информации в оцифрованной (двоичной) форме. Запоминающим элементом в регистре является триггер - устройство, которое может находиться в одном из двух состояний(0,1). Число триггеров в регистре называется разрядностью компьютера (8, 16, 32 и 64). Процессор- центральное устройство компьютера.

Назначение процессора:

1. управлять работой ЭВМ по заданной программе;

2. выполнять операции обработки информации.

Микросхема, реализующая функции центрального процессора персонального компьютера, называется микропроцессором. Микропроцессор выполнен в виде сверхбольшой интегральной схемы. Чем больше компонентов содержит микропроцессор, тем выше производительность компьютера.

Состав процессора:

Устройство управления (УУ),

Арифметико-логическое устройство (АЛУ),

Регистры процессорной памяти.

УУ управляет работой всех устройств компьютера по заданной программе. АЛУ - вычислительный инструмент процессора; это устройство выполняет арифметические и логические операции по командам программы. Важнейшей характеристикой процессора является тактовая частота - количество операций, выполняемых им за 1 секунду (Гц). Информационная связь между устройствами компьютера осуществляется через информационную магистраль (другое название - общая шина). Периферийные устройства - это устройства, с помощью которых информация или вводится в компьютер, или выводится из него. Они также называют внешними или устройствами ввода-вывода данных (клавиатура, монитор, дисковод).

Вопрос 12: Команда и ее формат. Взаимосвязь формата команды и основных параметров эвм.

Команда ЭВМ представляет собой код, определяющий операцию вычислительной машины и данные, участвующие в операции.

В команде, как правило, содержатся не сами операнды, а информация объект адресах ячеек памяти или регистрах, в которых они находятся. Код команды можно представить состоящим из нескольких полей, каждое из которых имеет свое функциональное назначение.

В общем случае команда состоит из:

¨ операционной части (содержит код операции);

¨ адресной части (содержит адресную информацию о местонахождении обрабатываемых данных и месте хранения результатов).

Структура команды определяется составом, назначением и расположением полей в коде.

Форматом команды называется заранее оговоренная структура полей ее кода с разметкой номеров разрядов (бит), определяющих границы отдельных полей команды, или с указанием числа разрядов (бит) в определенных полях, позволяющая ЭВМ распознавать составные части кода.

Взаимозависимость формата команды и основных параметров ЭВМ

Важной характеристикой команды служит ее длина, которая складывается из длины поля кода операции и суммы длин адресных полей.

Максимальное количество операций, которое может быть закодировано в поле кода операций длиной nкоп, составляет 2^nКОп. Тогда по известному количеству команд, составляющих систему команд данной ЭВМ, можно определить необходимую длину поля операции.

Естественно, что эта величина должна быть минимально возможным целым числом. Так, для ЭВМ, имеющей систему команд из 100 команд, длина поля кода операции составит 7 бит.

Современные ЭВМ имеют, как правило, запоминающие устройства с минимальной адресуемой единицей 1 байт (1 байт = 8 бит). Поэтому, например, адресация ЗУ объемом 1 мегабайт (1М байт = 220 байт) требует 20 разрядов адресного поля.

Одним из способов уменьшения длины поля адреса является введение в состав ЭВМ дополнительно специального блока памяти небольшого объема – регистровой памяти (РП). Это запоминающее устройство имеет высокое быстродействие и служит для хранения часто используемой информации: промежуточных результатов вычислений, счетчиков циклов, составляющих адреса при некоторых режимах адресации и т.д.. Так как объем РП невелик, адресация ее элементов требует относительно короткого адресного поля. Например, для регистровой памяти объемом 8 регистров требуется всего лишь трехразрядное адресное поле.

Многомашинный вычислительный комплекс (ММВК) – комплекс, включающий в себя две или более ЭВМ (каждая из которых имеет процессор, ОЗУ, набор периферийных устройств и работает под управлением собственной операционной системы), связи между которыми обеспечивают выполнение функций, возложенных на комплекс.

Цели, которые ставятся при объединении ЭВМ в комплекс, могут быть различными, и они определяют характер связей между ЭВМ. Чаще всего основной целью создания ММВК является или увеличение производительности, или повышение надежности, или одновременно и то и другое. Однако при достижении одних и тех же целей связи между ЭВМ могут существенно различаться.

По характеру связей между ЭВМ комплексы можно разделить на три типа: косвенно-, или слабосвязанные; прямосвязанные; сателлитные.

В косвенно-, или слабосвязанных, комплексах ЭВМ связаны друг с другом только через внешние запоминающие устройства (ВЗУ). Для обеспечения таких связей используются устройства управления ВЗУ с двумя и более входами. Структурная схема такого ММВК приведена на рис. 1.5. Заметим, что здесь и далее для простоты приводятся схемы для двухмашинных комплексов. При трех и более ЭВМ комплексы строятся аналогичным образом. В косвенно-связанных комплексах связь между ЭВМ осуществляется только на информационном уровне. Обмен информацией осуществляется в основном по принципу «почтового ящика», т. е. каждая из ЭВМ помещает в общую внешнюю память информацию, руководствуясь собственной программой, и соответственно другая ЭВМ принимает эту информацию, исходя из своих потребностей. Такая организация связей обычно используется в тех случаях, когда ставится задача повысить надежность комплекса путем резервирования ЭВМ. В этом случае ЭВМ, являющаяся основной, решает заданные задачи, выдает результаты и постоянно оставляет в общем ВЗУ всю информацию, необходимую для продолжения решения с любого момента времени. Вторая ЭВМ, являющаяся резервной, может находиться в состоянии ожидания, с тем чтобы в случае выхода из строя основной ЭВМ, по сигналу оператора начать выполнение функций, используя информацию, хранимую в общем ВЗУ основной ЭВМ.

Рис. 2.2. Связи между ЭВМ и ММВК

При такой связи может быть несколько способов организации работы комплекса.

1. Резервная ЭВМ находится в выключенном состоянии (ненагруженный резерв) и включается только при отказе основной ЭВМ. Естественно, для того чтобы резервная ЭВМ начала выдавать результаты вместо основной, потребуется определенное время, которое определяется временем, необходимым для включения ЭВМ, вхождением ее и режим, а также временем, отводимым для проверки ее исправности. Это время может быть достаточно большим. Такая организация возможна, когда система, в которой работает ЭВМ, не критична по отношению к некоторым перерывам или остановкам в процессе решения задач. Это обычно имеет место в случаях, когда ЭВМ не выдает управляющую информацию.

2. Резервная ЭВМ находится в состоянии полной готовности и в любой момент может заменить основную ЭВМ (нагруженный резерв), причем либо не решает никаких задач, либо работает в режиме самоконтроля, решая контрольные задачи. В этом случае переход в работе от основной к резервной ЭВМ может осуществляться достаточно быстро, практически без перерыва в выдаче результатов. Однако следует заметить, что основная ЭВМ обновляет в общем ВЗУ информацию, необходимую для продолжения решения, не непрерывно, а с определенной дискретностью, поэтому резервная ЭВМ начинает решать задачи, возвращаясь на некоторое время назад. Такая организация допустима и в тех случаях, когда ЭВМ работает непосредственно в контуре управления, а управляемым процесс достаточно медленным и возврат во времени не оказывает заметного влияния.

При организации работы по первому и второму вариантам ЭВМ используются нерационально: одна ЭВМ всегда простаивает. Простоев можно избежать, загружая ЭВМ решением каких-то вспомогательных задач, не имеющих отношения к основному процессу. Это повышает эффективность системы – производительность практически удваивается.

3. Для того чтобы полностью исключить перерыв в выдаче результатов, обе ЭВМ, и основная и резервная, решают одновременно одни и те же задачи, но результаты выдаст только основная ЭВМ, а в случае выхода се из строя результаты начинает вы давать резервная ЭВМ. При этом общее ВЗУ используется только для взаимного контроля. Иногда такой комплекс дополняется устройством для сравнения результатов с целью контроля. Если при этом используются три ЭВМ, то возможно применение метода голосования, когда окончательный результат выдается только при совпадении результатов решения задачи не менее чем от двух ЭВМ. Это повышает и надежность комплекса в целом, и достоверность выдаваемых результатов. Разумеется, в этом варианте высокая надежность и оперативность достигается весьма высокой ценой – увеличением стоимости системы.

Следует обратить внимание, что при любой организации работы и слабосвязанном ММВК переключение ЭВМ осуществляется либо по командам оператора, либо с помощью дополнительных средств, осуществляющих контроль исправности ЭВМ и вырабатывающих необходимые сигналы. Кроме того, быстрый переход к работе с основной на резервную ЭВМ возможен лишь при низкой эффективности использования оборудования.

Существенно большой гибкостью обладают прямосвязанные ММВК. В прямосвязанных комплексах существуют три вида связей (рис. 1.5): общее ОЗУ (ООЗУ); прямое управление, иначе связь процессор (П) – процессор; адаптер канал – канал (АКК).

Связь через общее ОЗУ гораздо сильнее связи через ВЗУ. Хотя первая связь также носит характер информационной связи и обмен информацией осуществляется по принципу «почтового ящика», однако, вследствие того, что процессоры имеют прямой доступ к ОЗУ, все процессы в системе могут протекать с существенно большей скоростью, а разрывы в выдаче результатов при переходах с основной ЭВМ на резервную сокращаются до минимума. Недостаток связи через общее ОЗУ заключается в том, что при выходе из строя ОЗУ, которое является сложным электронным устройством, нарушается работа всей системы. Чтобы этого избежать, приходится строить общее ОЗУ из нескольких модулей и резервировать информацию. Это, в свою очередь, приводит к усложнению организации вычислительного процесса в комплексе и в конечном счете к усложнению операционных систем. Следует отметить также и то, что связи через общее ОЗУ существенно дороже, чем через ВЗУ.

Непосредственная связь между процессорами – канал прямого управления – может быть не только информационной, но и командной, т. е. по каналу прямого управления один процессор может непосредственно управлять действиями другого процессора. Это, естественно, улучшает динамику перехода от основной ЭВМ к резервной, позволяет осуществлять более полный взаимный контроль ЭВМ. Вместе с тем передача сколько-нибудь значительных объемов информации по каналу прямого управления нецелесообразна, так как в этом случае решение задач прекращается: процессоры ведут обмен информацией.

Связь через адаптер канал – канал в значительной степени устраняет недостатки связи через общее ОЗУ и вместе с тем почти не уменьшает возможностей по обмену информацией между ЭВМ по сравнению с общим ОЗУ. Сущность этого способа связи заключается в том, что связываются между собой каналы двух ЭВМ с помощью специального устройства – адаптера. Обычно это устройство подключается к селекторным каналам ЭВМ. Такое подключение адаптера обеспечивает достаточно быстрый обмен информацией между ЭВМ, при этом обмен может производиться большими массивами информации. В отношении скорости передачи информации связь через АКК мало уступает связи через общее ОЗУ, а в отношении объема передаваемой информации – связи через общее ВЗУ. Функции АКК достаточно просты: это устройство должно обеспечивать взаимную синхронизацию работы двух ЭВМ и буферизацию информации при ее передаче. Хотя функции АКК и его структура (рис. 1.5) достаточно просты, однако большое разнообразие режимов работы двух ЭВМ и необходимость реализации этих режимов существенно усложняет это устройство.

Прямосвязанные комплексы позволяют осуществлять все способы организации ММВК, характерные для слабосвязанных комплексов. Однако за счет некоторого усложнения связей эффективность комплексов может быть значительно повышена. В частности, в прямосвязанных комплексах возможен быстрый переход от основной ЭВМ к резервной и в тех случаях, когда резервная ЭВМ загружена собственными задачами. Это позволяет обеспечивать высокую надежность при высокой производительности.

В реальных комплексах одновременно используется не один вид связи между ЭВМ, а два или более. В том числе очень часто в прямосвязанных комплексах присутствует и косвенная связь через ВЗУ.

Для комплексов с сателлитными ЭВМ характерным является не способ связи, а принципы взаимодействии ЭВМ. Структура связей в сателлитных комплексах не отличается от связей в обычных ММВК: чаще всего связь между ЭВМ осуществляется через АКК. Особенностью же этих комплексов является то, что в них, во-первых, ЭВМ существенно различаются по своим характеристикам, а во-вторых, имеет место определенная соподчиненность машин и различие функций, выполняемых каждой ЭВМ. Одна из ЭВМ, основная, является, как правило, высокопроизводительной и предназначается для основной обработки информации. Вторая, существенно меньшая по производительности, называется сателлитной или вспомогательной ЭВМ. Ее назначение – организация обмена информацией основной ЭВМ с периферийными устройствами, ВЗУ, удаленными абонентами, подключенными через аппаратуру передачи данных к основной ЭВМ. Кроме того, сателлитная ЭВМ может производить предварительную сортировку информации, преобразование ее вформу, удобную для обработки на основной ЭВМ, приведение выходной информации к виду, удобному для пользователя, и др. Сателлитная ЭВМ, таким образом, избавляет основнуювысокопроизводительную ЭВМ от выполнения многочисленных действий, которые не требуют ни большой разрядности, ни сложных операций, т. е. операций, для которых большая, мощная ЭВМ не нужна. Более того, с учетом характера выполняемых сателлитной машиной операций она может быть ориентирована на выполнение именно такого класса операций и обеспечивать даже большую производительность, чем основная ЭВМ.

Некоторые комплексы включают в себя не одну, а несколько сателлитных ЭВМ, при этом каждая из них ориентируется на выполнение определенных функций: например, одна осуществляет связь основной ЭВМ с устройствами ввода–вывода информации, другая – связь с удаленными абонентами, третья организует файловую систему и т. д.

Появление в последнее время дешевых и простых микро-ЭВМ в немалой степени способствует развитию сателлитных комплексов. Сателлитные комплексы решают только одну задачу: увеличивают производительность комплекса, не оказывая заметного влияния на показатели надежности.

Подключение сателлитных ЭВМ принципиально возможно не только через АКК, но и другими способами, однако связь через АКК наиболее удобна.

2.2. Вычислительные сети

Общие сведения и архитектура ПЭВМ.

Краткая характеристика основных узлов ПЭВМ.

Программное обеспечение ПЭВМ.

Общие сведения о MS Windows. Структура и основные элементы.

5. Программа «Проводник». Возможности и приёмы работы.

Работа с файлами и папками.

7. Папка «Мой компьютер».

8. Папка «Корзина».

Ярлыки, контекстное и главное меню.

Структура окна текстового процессора.

Фрагменты текста (символ, слово, строка, абзац, страница) и работа с ними.

Ввод текста.

Редактирование документа.

Форматирование абзацев.

Подготовка текста к печати и печать.

Общие сведения об Excel.

Построение таблицы.

Редактирование таблицы.

Ввод формул.

Адресация ячеек.

Использование функций.

Построение диаграмм. Редактирование диаграмм.

Решение оптимизационных задач в Excel.

Использование встроенного макрорекодера для решения нестандартных

Задач в Excel.

Алгоритмизация и программирование в Visual Basic и Visual Basic for

Applications. Создание простейших Windows-приложений.

Примерный перечень вопросов к зачету

1. Общие сведения и архитектура персональных электронно-вычислительных машин (ПЭВМ).

Общие сведения об ЭВМ.

Персональная ЭВМ это небольшая по размерам и стоимости универсальная цифровая микро-ЭВМ, предназначенная для индивидуального пользования.
Термин "персональные" призвано подчеркнуть, что вычислительная
машина предназначена для индивидуального пользования. Первенство в создании персональной ЭВМ связывается с фирмой МITS, которая сконструировалав 1974 году систему ALTAIR 8800.
В СССР первые персональные компьютеры появились в 1982 году

История ЭВМ насчитывает вот уже более полутора столетий. У истоков электронно-вычислительной техники стояли такие известные инженеры и исследователи, как Ч.Беббидж, А.Лавлейс (дочь Ч.Байрона), Дж. Буль, Ф.М.Слободской, В.Я.Слонимский, И.Штоффель, Ю.М.Дьяков, П.Л. Чебышев, Г.Холлерит, Атанасов, Айткен, др. Первая ЭВМ, обладающая всеми компонентами современного компьютера (промежуточной внутренней памятью, программным обеспечением, проч. - речь ждет о машине «EDSAC», изобретенной Дж.Эккертом и Дж.Моучли) была создана в 1947 г. в Пенсильванском университете (Англия). С тех пор сменилось уже три поколения ЭВМ, каждое из которых отличалось от другого целым набором технических характеристик. А именно:

  • Своей элементной базой; (1)
  • быстродействием; (2)
  • объемом оперативной памяти; (3)
  • математическим обеспечением;
  • внешними устройствами (4) , (5) , проч.

Большинство ЭВМ работает на основе двоичной системы счисления . (7) Двоичной называется такая система счисления, где есть только две цифры - ноль и единица.

Дело в том, что электронные системы, в которых электрический ток может находиться в двух состояниях (или он есть в цепи, или его нет), наиболее просты и надежны. Вместе с тем даже с помощью двух цифр - 0 и 1 - можно записывать числа любой величины, складывать их, умножать и делить.

Однако современные программисты, конечно же, не пользуются при написании своих программ двоичным кодом. Обычно они используют т.н. языки программирования - набор универсальных команд, легко усваиваемых

Взаимодействие пользователя ЭВМ с операционными системами построено по принципу диалога. Практически это выглядит так: пользователь набирает на клавиатуре соответствующую команду - операционная система выполняет его инструкцию. Такой способ «общения» пользователя и ЭВМ ненагляден и недостаточно удобен, т.к. пользователь не имеет возможности корректировать свои действия. Поэтому программисты часто, наряду с операционными системами, вводят в память ЭВМ и т.н. «программы-оболочки». Функция этих программ состоит в том, чтобы выводить на экран монитора ЭВМ описания действий, которые производят операционные системы. С помощью «программ-оболочек» можно просматривать содержащиеся в памяти компьютера каталоги программ, копировать программы, запускать их на выполнение, др. (9)

ПЭВМ, как и любая другая вычислительная машина, является не чем иным, как «слепым» исполнителем программ, которые и придают компьютеру всю привлекательность.

Под программой понимают описание, воспринимаемое ЭВМ и достаточное для решения на ней определенной задачи. Для составления программ используют искусственные языки, называемые языками программирования. ЭВМ, как правило, непосредственно воспринимает и выполняет программы, написанные только на одном из языков программирования, который при этом является машинным языком данной ЭВМ.

Архитектура вычислительной машины (Архитектура ЭВМ , англ. Computer architecture ) - концептуальная структура вычислительной машины , определяющая проведение обработки информации и включающая методы преобразования информации в данные и принципы взаимодействия технических средств и программного обеспечения.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Схема устройства такой ЭВМ представлена на рис. 1. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура – устройство ввода, дисплей и печать – устройства вывода.

2. Краткая характеристика основных узлов ПЭВМ.

Основными узлами ЭВМ являются:

Центральный процессор (ЦП)

(ЦП) = (УУ) + (АЛУ)

Оперативная память (ОЗУ)

Постоянное запоминающее устройство (ПЗУ)

Внешняя память (ВЗУ)

Устройства Ввода (УВв)

Устройства Вывода (УВыв)

Все устройства ЭВМ подсоединены к единой ИНФОРМАЦИОННОЙ

Узлы ЭВМ классифицируются на:
1. комбинационные - это узлы, выходные сигналы которых определяются только сигналом на входе, действующим в настоящий момент времени (дешифратор). Выходной сигнал дешифратора зависит только от двоичного кода, поданного на вход в настоящий момент времени. Комбинационные узлы называют также автоматами без памяти.
2. последовательностные (автоматы с памятью) - это узлы, выходной сигнал которых зависит не только от комбинации входных. сигналов, действующих в настоящий момент времени, но и от предыдущего состояния узла (счетчик).
3. программируемые узлы функционируют в зависимости от того, какая программа в них записана. Например, программируемая логическая матрица (ПЛМ), которая в зависимости от прожженной в ней программы может выполнять функции сумматора, дешифратора, ПЗУ. ШИНЕ

3. Программное обеспечение ПЭВМ.

Под ПО в узком смысле понимается просто совокупность программ. В широком смысле в ПО (наряду с программами) включают различные языки, процедуры, правила и документацию, необходимые для использования и эксплуатации программных продуктов.

ПО ПЭВМ по функциональному признаку традиционно делится на системное и прикладное.

Системным называется ПО, используемое для разработки и выполнения программных продуктов, а также для предоставления пользователю ЭВМ определенных услуг. Оно является необходимым дополнением к техническим средствам ПЭВМ. Без СПО машина по сути безжизненна.

Прикладным называют ПО, предназначенное для решения определенной целевой задачи или класса таких задач. К этим задачам относятся производство вычислений по заданному алгоритму, подготовка того или иного текстового документа и т. п.

Операционные системы являются неотъемлемым обязательным дополнением ПЭВМ, организуя выполнение программ и взаимодействие пользователя с компьютером.

Другие компоненты СПО являются факультативными. Их состав определяется потребностями и желаниями пользователя.

Сервисные системы расширяют возможности ОС, предоставляя пользователю, а также выполняемым программам набор дополнительных услуг. Некоторые сервисные системы таковы, что изменяют облик ОС до неузнаваемости, а поэтому иногда называются операционными системами. Сказанное имеет отношение в особенности к интерфейсным системам.

Гораздо менее однородной группой системных программных средств являются инструментальные системы. Объединяет их то, предназначены для разработки ПО, хотя часть из них может применяться и для решения прикладных задач. Использование большинства инструментальных систем связано с составлением программ. поэтому они могут считаться системами программирования. Однако собственно к системам программирования традиционно относят такие системы, с помощью которых можно запрограммировать и решить любую задачу, допускающую алгоритмическое решение. Иными словами, системы программирования обладают универсальностью. Другие же типы инструментальных систем являются специализированными в том смысле, что они служат для создания ПО определенного функционального назначения. При этом эффективность разработки ПО по сравнению с использованием для этой же цели универсальных инструментальных средств возрастает.

Системы технического обслуживания предназначены для облегчения тестирования оборудования и поиска неисправностей. Они являются инструментом специалистов по эксплуатации аппаратной части компьютеров в данной книге не рассматриваются.

4. Общие сведения о MS Windows. Структура и основные элементы.

Современный Windows - это операционная система, управляющая работой персонального компьютера. Windows имеет удобный графический пользовательский интерфейс. В отличие от старой операционной системы DOS с текстовым интерфейсом, Windows не требует знания команд операционной системы и их точного ввода с клавиатуры. Подавляющее большинство операций по управлению работой персонального компьютера выполняются манипулятором мышь над графическими объектами Windows, либо короткими комбинациями клавиш (горячими клавишами) на клавиатуре.

На сегодняшний день на рынке программного обеспечения одно из главных мест занимают операционные системы семейства Windows. Эти продукты ориентированы на использование современных компьютеров и прикладных программных средств. Они предоставляют людям различных профессий удобное средство общения с компьютером.

Наиболее значительными преимуществами Windows-систем являются следующие:

· Графический интерфейс пользователя . В отличие от ранее принятых понятий и методов общения (через команды и имена файлов), вWindows используется существенно иной подход к управлению программами. Здесь пользователь работает с графическими образами на экране монитора.

· Единство интерфейса . Для работы в среде Windows было создано множество приложений, и все они разработаны в соответствии с единым стандартом. Все приложения похожи между собой в части управления и общения с пользователем. Это дает возможность пользователю, получив навыки работы с одним приложением, легко освоить работу с другим. Кроме того, программные продукты, созданные с помощью одних Windows-приложений, полностью воспринимаются другими приложениями.

· Многозадачный режим работы . При работе в Windows пользователь может одновременно запустить несколько программ (задач), что дает возможность, не завершая работы в одном приложении, воспользоваться услугами другого.

Пользовательский интерфейс – это методы и средства взаимодействия человека с аппаратными и программными средствами компьютера.
Стартовый экран Windows представляет собой системный объект, называемый рабочим столом.

Рабочий стол - это графическая среда, на которой отображаются объекты и элементы управления Windows. На рабочем столе можно видеть значки (пиктограммы), ярлыки и панель задач (основной элемент управления). При запуске Windows на рабочем столе присутствуют, как минимум, три значка: Мой компьютер, Сетевое окружение, Корзина . На рабочем столе могут быть расположены и другие значки. Его можно использовать и как временное хранилище своих файлов, но по окончании работы в учебном классе они должны быть либо удалены, либо перемещены в собственные папки.

Значки являются графическим изображением объектов и позволяют управлять ими. Значок- это графическое представление объекта в свернутом виде, соответствующее папке, программе, документу, сетевому устройству или компьютеру. Значки, как правило имеют метки - надписи, которые располагаются под ними. Щелчок левой кнопкой мыши по значку позволяет выделить его, а двойной щелчок – открыть (запустить) соответствующее этому значку приложение.

Ярлык является указателем на объект. Ярлык – это специальный файл, в котором содержится ссылка на представленный им объект (информация о месте расположения объекта на жестком диске). Двойной щелчок мыши по ярлыку позволяет запустить (открыть) представляемый им объект. При его удалении сам объект не стирается, в отличие от удаления значка. Достоинство ярлыков в том, что они обеспечивают быстрый доступ к объекту из любой папки, не расходуя на это памяти. Отличить ярлык от значка можно по маленькой стрелке в левом нижнем углу пиктограммы.

Панель задач является инструментом для переключения между открытыми папками или приложениями. В левой части панели задач расположена кнопка "Пуск"; в правой - панель индикации. На самой панели изображаются все открытые в данный момент объекты.

Кнопка "Пуск" открывает Главное меню . С его помощью можно запустить все программы, зарегистрированные в операционной системе, получить доступ ко всем средствам настройки операционной системы, к поисковой и справочной системам и другим функциям.

Центральным понятием Windows является окно. Окно – структурный и управляющий элемент пользовательского интерфейса, представляющий собой ограниченную рамкой прямоугольную область экрана, в которой может отображаться приложение, документ или сообщение.

Выше на рисунке показан рабочий стол Windows с открытым Главным меню, окном текстового процессора Word, значками и ярлыками и некоторыми свернутыми на панели задач документами.

Из других понятий Windows следует отметить понятия каталога и папки.

Каталог – поименованная группа файлов, объединенных по какому-либо признаку.

Папка – понятие, которое используется в Windows вместо понятия каталог в более ранних операционных системах. Понятие папка имеет расширенное толкование, так как наряду с обычными каталогами папки представляют и такие объекты, как Мой компьютер, Проводник, Принтер, Модем и др.

5. Программа «Проводник». Возможности и приёмы работы.

Программа Проводник – средство, дающее возможность пользователю видеть в иерархической форме структуру, размещение папок и быстро переходить к какому-либо объекту (папке, файлу, ярлыку), а также выполнять ряд действий с папками и файлами.

Вызвать Проводник можно из Главного меню командой Пуск/Программы/Проводник или выбрав пункт Проводник в контекстных меню кнопки Пуск или папки Мой компьютер. Из окна папки Проводник можно вызвать следующим образом: выделить вложенную папку и дать команду Файл/Проводник. На экран будет выведено окно Проводника с открытой выбранной папкой.

Окно Проводника состоит из двух панелей. Левая панель показывает информационные ресурсы, представленные в виде иерархического дерева. Правая панель показывает содержимое текущей папки.

Процесс перемещения по папкам с целью открытия необходимой называют навигацией.Проводник является инструментом поиска – навигатором. Чтобы эффективно работать в средеПроводника , нужно знать приемы навигации в нем.

Если папка содержит в себе другие папки, то в дереве на левой панели она обозначена значком +. Для отображения структуры вложенных в нее папок нужно щелкнуть по этому значку. Когда папка раскроется, знак + сменится на -. Для сворачивания папки нужно щелкнуть по значку -.

Для просмотра содержимого папки надо щелкнуть на имени или значке папки в дереве. На левой панели значок сменится на . В правой панели будет выведено содержимое папки. Также можно открыть папку двойным щелчком по ее значку или имени в правой панели. При этом в правой панели появится содержимое папки, а в левой панели значок этой папки сменит значок открытой папки.

Чтобы открыть объект, находящийся внутри папки, надо выполнить одно из следующих действий:

  • Выполнить двойной щелчок на значке объекта;
  • Выделить объект щелчком мыши и дать команду Файл/Открыть ;
  • В контекстном меню объекта выбрать пункт Открыть .

Если объект – программа, то Windows запустит ее. Если объект – документ, то Windows запустит программу, с помощью которой он создавался, и откроет в ее окне документ. Если объект – ярлык, то это равносильно открытию объекта, для которого этот ярлык создавался.

Проводник позволяет не только просматривать существующие объекты, но и создавать новые.

В среде Проводника можно выполнять различные действия с объектами (копирование, переименование, удаление и т.д.). Для этого объекты должны быть выделены. Одиночный объект выделяется щелчком мыши по его имени или значку.

6. Работа с файлами и папками.

Файл - это именованная последовательность байтов произвольной длины.

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

    1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).
  • набор команд по обработке (программы);
  • данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы .

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе . Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данных передаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления , по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины . Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом , передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты .

Программное управление работой периферийного устройства производится через программу - драйвер , которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.


Исторически компьютер появился как машина для вычислений и назывался электронной вычислительной машиной - ЭВМ. Структура такого устройства была описана знаменитым математиком Джоном фон Нейманом в 1945 г

Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов.

Структура современного персонального компьютера представлена на рисунке ниже.

Рассмотрим принцип взаимодействия основных устройств.

Материнская (системная) плата - важнейший элемент ПК. На ней размещаются устройства, непосредственно осуществляющие процесс обработки информации (вычислений). Как правило, это микропроцессор, внутренняя память, системная шина, контроллер клавиатуры, генератор тактовой частоты, контроллер прерываний, таймер и др. Схемы, управляющие другими внешними устройствами компьютера, как правило, находятся на отдельных платах, вставляемых в унифицированные разъемы (слоты) на материнской плате. Через эти разъемы контроллеры устройств подключаются непосредственно к системной магистрали передачи данных в компьютере - шине. Иногда эти контроллеры могут располагаться на системной плате. Наборы микросхем, на основе которых исполняются системные платы, называют чипсетами. Материнские платы различаются по типу процессоров, которые могут быть установлены на них, и названия фирм, их выпускающих. На материнских платах находятся специальные перемычки - джамперы, позволяющие подстроить ее под тип процессора и других устройств, устанавливаемых на ней.

Все дополнительные устройства взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных - шину. Виды слотов расширения различаются по типу шины. Данные могут передаваться между внешними устройствами и процессором, оперативной памятью и процессором, внешними устройствами и оперативной памятью или между устройствами ввода-вывода. Шина характеризуется типом, разрядностью, частотой и количеством подключаемых внешних устройств. При работе с оперативной памятью шина проводит поиск нужного участка памяти и обменивается информацией с найденным участком. Эти задачи выполняют две части системной шины: адресная шина и шина данных.

Аппаратно-логические устройства, отвечающие за совместное функционирование различных компонентов, называют интерфейсами. Современный компьютер заполнен разными интерфейсами, обеспечивающими всеобщее взаимодействие. На интерфейсы существуют стандарты.

Совокупность интерфейсов, реализованных в компьютере, образует то, что называют архитектурой компьютера.

Для добавления в ПК нового дополнительного устройства необходим контроллер - устройство, аппаратно согласовывающее работу системы и дополнительного устройства. Кроме того, необходим драйвер этого устройства - программа, позволяющая программно связать это устройство с системой в целом.

Контроллер должен учитывать аппаратные особенности подключаемого устройства, а драйвер должен позволить операционной системе, используя стандартный набор командных запросов, управлять нестандартным устройством.

Драйвер выступает в роли "переводчика" с языка операционной системы на язык конкретного устройства, контроллер выступает в роли аппаратного "мостика" между системой в целом и дополнительным устройством.

Центральной частью компьютера является системный блок, с присоединенными к нему клавиатурой, монитором и мышью. Системный блок и монитор независимо друг от друга подключаются к источнику питания - сети переменного тока. В современных компьютерах дисплей и системный блок иногда монтируются в едином корпусе.

В системном блоке располагаются все основные устройства компьютера:

микропроцессор - мозг компьютера, который выполняет поступающие на его вход команды: проводит вычисления и управляет работой остальных устройств ПК;

оперативная память, предназначенная для временного хранения программ и данных;

контроллеры, предназначенные для независимого от процессора управления отдельными процессами в работе ПК;

накопители на гибких магнитных дисках, используемые для чтения и записи на дискеты;

накопитель на жестком магнитном диске, предназначенный для чтения и записи на жесткий магнитный диск (винчестер);

дисководы для компакт-дисков, обеспечивающие возможность чтения данных с компьютерных компакт-дисков и проигрывания аудиокомпакт-дисков, а также запись информации на компакт-диск;

блок питания, преобразующий электропитание сети в постоянный ток, подаваемый на электронные схемы компьютера;

счетчик времени, который функционирует независимо от того, включен компьютер или нет;

другие устройства.

Все компоненты ПК по их функциональному отношению к работе с информацией можно условно разделить на:

устройства обработки информации (центральный процессор, специализированные процессоры);

устройства хранения информации (жесткий диск, CD-ROM, оперативная память, др.);

устройства ввода информации (клавиатура, мышь, микрофон, сканер и т.д.);

устройства вывода информации (монитор, принтер, акустическая система и т.д.).

Микропроцессор (МП), или центральный процессор {CPU, от англ. Central Processing Unit) - основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.

Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина. Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему - контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Память (внутренняя - системная, включающая ОЗУ и ПЗУ и внешняя дисковая). ПЗУ (от англ. ROM, Read Only Memory - память только для чтения) служит для хранения неизменяемой (постоянной) программной и справочной информации. ОЗУ (от англ. RAM, Random Access Memory - память с произвольным доступом) предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Дисковая память относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач, в ней, в частности, хранится все программное обеспечение компьютера. В качестве устройств внешней памяти размещаемых в системном блоке, используются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках, накопители на оптических дисках (НОД) и др;

Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания - аккумулятору и при отключении машины от сети продолжает работать.

Внешние устройства (ВУ). Это важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что по стоимости ВУ иногда составляют 50 - 80% всего ПК, От состава и характеристик ВУ во многом зависят возможность и эффективность применения ПК в системах управления и в народном хозяйстве в целом.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков. Так, по назначению можно выделить следующие виды ВУ:

внешние запоминающие устройства (ВЗУ) или внешняя память ПК;

устройства ввода информации;

устройства вывода информации;

средства связи и телекоммуникации.

Монитор - устройство для отображения вводимой и выводимой из ПК информации.

Устройства речевого ввода-вывода относятся к быстроразвивающимся средствам мультимедиа. Устройства речевого ввода - это различные микрофонные акустические системы, "звуковые мыши", например, со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и закодировать.

Устройства речевого вывода - это различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.

К устройствам ввода информации относятся:

клавиатура - устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;

графические планшеты (диджитайзеры) - для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК;

сканеры (читающие автоматы) - для автоматического считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей; в устройстве кодирования сканера в текстовом режиме считанные символы после сравнения с эталонными контурами специальными программами преобразуются в коды ASCII, а в графическом режиме считанные графики и чертежи преобразуются в последовательности двухмерных координат;

манипуляторы (устройства указания): джойстик - рычаг, мышь, трекбол - шар в оправе, световое перо и др. - для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК;

сенсорные экраны - для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК.

К устройствам вывода информации относятся:

принтеры - печатающие устройства для регистрации информации на бумажный носитель;

графопостроители (плоттеры) - для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель; плоттеры бывают векторные с вычерчиванием изображения с помощью пера и растровые: термографические, электростатические, струйные и лазерные.

Устройства связи и телекоммуникации используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифро-аналоговые и аналого-цифровые преобразователи и т.п.) и для подключения ПК к каналам связи, к другим ЭВМ и вычислительным сетям (сетевые интерфейсные платы, "стыки", мультиплексоры передачи данных, модемы).

Дополнительные схемы. К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления некоторых трансцендентных, в том числе тригонометрических, функций. Математический сопроцессор имеет свою систему команд и работает параллельно (совмещено во времени) с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз.

Сопроцессор ввода-вывода за счет параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (монитор, принтер, НЖМД, НГМД и др.); освобождает МП от обработки процедур ввода-вывода, в том числе реализует и режим прямого доступа к памяти.

Важнейшую роль играет в ПК контроллер прерываний.

Прерывание - временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной) программы.

Прерывания возникают при работе компьютера постоянно. Достаточно сказать, что все процедуры ввода-вывода информации выполняются по прерываниям. Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. МП, получив этот сигнал, приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.